905429

TissueFab® bioink 

(Gel)ma -UV/365 nm

Manufacturer: Sigma Aldrich

Synonym(S): Bioink, GelMA, Gelatin methacrylamide, Gelatin methacrylate, Gelatin methacryloyl

Select a Size

Pack Size SKU Availability Price
1 EA 905429-1-EA In Stock ₹ 43,800.00

905429 - 1 EA

₹ 43,800.00

In Stock

Quantity

1

Base Price: ₹ 43,800.00

GST (18%): ₹ 7,884.00

Total Price: ₹ 51,684.00

description

0.2 μm sterile filtered, suitable for 3D bioprinting applications

form

viscous liquid

impurities

≤5 CFU/g Bioburden (Fungal)≤5 CFU/g Bioburden (Total Aerobic)

color

colorless to pale yellow

pH

6.5-7.5

application(s)

3D bioprinting

storage temp.

2-8°C

Related Products

Img

Sigma Aldrich

906905

Sacrificial...

Img

Sigma Aldrich

905410

Alg(Gel)ma -UV/365 nm...

Img

Sigma Aldrich

919632

(GelHA)ma -UV/365 nm...

Img

Sigma Aldrich

921610

(GelAlg)ma -Vis/405 nm...

Img

Sigma Aldrich

919624

(GelHA)ma -Vis/405 nm...

Img

Sigma Aldrich

920975

(GelAlgHA)ma -UV/365 nm...

Img

Sigma Aldrich

906913

Alg(Gel)ma -Vis/525 nm...

Img

Sigma Aldrich

919926

Crosslinking solution, low endotoxi...

Description

  • General description: 3D bioprinting is the printing of biocompatible materials, cells, growth factors and the other supporting materials necessary to yield functional complex living tissues. 3D bioprinting has been used to generate several different types of tissue such as skin, bone, vascular grafts, and cartilage structures. Based upon the desired properties, different materials and formulations can be used to generate both hard and soft tissues. While several 3D printing methods exist, due to the sensitivity of the materials used, extrusion-based methods with bioinks are most commonly employed.
  • Application: Gelatin methacryloyl (GelMA) is a polymerizable hydrogel material derived from natural extracellular matrix (ECM) components. Due to its low cost, abundance, and retention of natural cell binding motifs, gelatin has become a highly sought material for tissue engineering applications. The addition of photocrosslinkable methacrylamide functional groups in GelMA allows the synthesis of biocompatible, biodegradable, and non-immunogenic hydrogels that are stable in biologically relevant conditions and promote cell adhesion, spreading, and proliferation. In addition to fast gelation, the methacrylamide functional group can also be used to control the hydrogel physical parameters such as pore size, degradation rate, and swell ratio. Temporal and spatial control of the crosslinking reaction can be obtained by adjusting the degree of functionalization and polymerization conditions, allowing for the fabrication of hydrogels with unique patterns, 3D structures, and morphologies. Gelatin methacrylate based bioinks have been used to bioprint osteogenic[1], chondrogenic[2][3], hepatic[4][5][6], adipogenic[7], vasculogenic[8], epithelial[6], endothelial[9][10], cardiac valve[11], skin[12], tumor[10] and other tissues and constructs.
  • Packaging: Product contains 10ml of solution packaged in glass bottle.
  • Other Notes: Important tips for optimal bioprinting resultsOptimize printing conditions (e.g., nozzle diameter, printing speed, printing pressure, temperature, cell density) for the features of your 3D printer and your application.Reduce bubble formation. Air bubbles in bioink may hamper bioprinting. Carefully handle the bioink when you mix and transfer it to avoid bubble formation. Do not vortex or shake vigorously.UV light Crosslinking. Position the light source directly above the printed structure. Lower intensity light sources will require shorter distances and longer exposure times to complete crosslinking. Recommended conditions: Place an 800 mW/cm2 light source 8 cm above the printed structure and expose for 30 s.Procedure1. Prepare bioink solution: Warm TissueFab® - GelMA-UV bioink in a water bath or incubator set to 37 °C for 30 minutes or until the bioink becomes fluid. Gently invert the bioink to make a homogeneous solution. DO NOT vortex or shake vigorously.2. Prepare bioink-cell solution: Resuspend the cell pellet at the desired cell density with the bioink solution by gently pipetting up and down. Typical cell density for extrusion-based bioprinting is 1 to 5 x 106 cells/mL. Load the bioink-cell solution into the desired printer cartridge.3. Bioprint: Cool the filled printing cartridge to 15–19 °C to induce gelation, using a temperature controlled printhead or place the cartridge in at 4 °C for 10–15 minutes. If print bed temperature control is available, set temperature to 15 °C. Follow the 3D printer manufacturer′s instructions. Load the print cartridge onto the 3D printer and print directly onto a Petri dish or into multi-well plates. Adjust the flow according to nozzle diameter, printing speed, printing pressure, and temperature.4. Crosslink: Place the UV light source directly above the 3D-bioprinted structure and expose the structure to UV light (wavelength 365 nm). Use the appropriate distance settings and exposure times for your bioprinter. 5. Culture cells: Culture the bioprinted tissue with appropriate cell culture medium following standard tissue culture procedures.
  • Legal Information: TISSUEFAB is a registered trademark of Merck KGaA, Darmstadt, Germany

SAFETY INFORMATION

WGK

WGK 3

Compare Similar Items

Show Difference

Img

Sigma Aldrich

905429

(Gel)ma -UV/365 nm...


description:
0.2 μm sterile filtered, suitable for 3D bioprinting applications

form:
viscous liquid

impurities:
≤5 CFU/g Bioburden (Fungal)≤5 CFU/g Bioburden (Total Aerobic)

color:
colorless to pale yellow

pH:
6.5-7.5

application(s):
3D bioprinting

storage temp.:
2-8°C

Img

Supelco

90548

≥97.0% (CHNS)...


description:
__

form:
solid

impurities:
__

color:
__

pH:
__

application(s):
__

storage temp.:
__

Img

Supelco

90549

size: 20 μm, analytical standard...


description:
__

form:
particlessuspension

impurities:
__

color:
__

pH:
__

application(s):
__

storage temp.:
2-8°C

Img

Sigma Aldrich

905518

--


description:
__

form:
solid

impurities:
__

color:
__

pH:
__

application(s):
__

storage temp.:
__